Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas.
نویسندگان
چکیده
The general view on the functional role of the monkey inferior parietal lobule (IPL) convexity mainly derives from studies carried out more than two decades ago and does not account for the functional complexity suggested by more recent neuroanatomical findings. We investigated this issue by recording multi- and single units in the IPL convexity of two monkeys and characterizing their somatosensory, visual and motor responses, using a naturalistic (ethologically relevant) approach. These properties were then matched with IPL cytoarchitectonic parcellation. A further aim of this study was to describe the general properties and the localization of IPL mirror neurons, until now not investigated in detail. Results showed that each studied cytoarchitectonic subdivision of the IPL (PF, PFG, PG) is characterized by specific sensory and motor properties. A key feature of the recorded motor neurons is that of coding goal-directed motor acts. Motor responses are somatotopically organized in a rostro-caudal fashion, with mouth, hand and arm represented in PF, PFG and PG, respectively, with a certain degree of overlap between adjacent representations. In each subdivision the motor activity is associated with specific somatosensory and visual responses, suggesting that each area organizes motor acts in different space sectors. Mirror neurons have been found mainly in area PFG and their general features appear to be very similar to those of ventral premotor mirror neurons. The present data suggest that the IPL plays an important role in both action organization and action understanding and should be considered part of the motor system.
منابع مشابه
Anatomo-functional organization of the ventral primary motor and premotor cortex in the macaque monkey.
The ventral agranular frontal cortex of the macaque monkey is formed by a mosaic of anatomically distinct areas. Although each area has been explored by several neurophysiological studies, most of them focused on small sectors of single areas, thus leaving to be clarified which is the general anatomo-functional organization of this wide region. To fill this gap, we studied the ventral convexity...
متن کاملGrasping-related functional magnetic resonance imaging brain responses in the macaque monkey.
Research in recent decades has suggested the existence of a dedicated brain network devoted to the organization and execution of grasping, one of the most important and skilled movements of primates. Grasping an object requires the transformation of intrinsic object properties such as size, orientation, and shape into an appropriate motor scheme shaping the hand. Although electrophysiological r...
متن کاملOccipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study.
The anterior wall of the parieto-occipital sulcus (POs) of the macaque monkey, classically considered as part of Brodmann's area 19, contains two functionally distinct areas: a ventral, purely visual area, V6, and a dorsal area, V6A, containing visual neurons and neurons related to the control of arm movements. The aim of this study was to establish whether areas V6 and V6A, so far identified o...
متن کاملSuperior area 6 afferents from the superior parietal lobule in the macaque monkey.
Superior area 6 of the macaque monkey frontal cortex is formed by two cytoarchitectonic areas: F2 and F7. In the present experiment, we studied the input from the superior parietal lobule (SPL) to these areas by injecting retrograde neural tracers into restricted parts of F2 and F7. Additional injections of retrograde tracers were made into the spinal cord to define the origin of corticospinal ...
متن کاملThe role of inferior frontal and parietal areas in differentiating meaningful and meaningless object-directed actions.
Over the past two decades single cell recordings in primates and neuroimaging experiments in humans have uncovered the key properties of visuo-motor mirror neurons located in monkey premotor cortex and parietal cortices as well as homologous areas in the human inferior frontal and inferior parietal cortices which presumably house neurons with similar response properties. One of the most interes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 28 8 شماره
صفحات -
تاریخ انتشار 2008